Learning from nature: constructing high performance graphene-based nanocomposites

نویسندگان

  • Shanshan Gong
  • Hong Ni
  • Lei Jiang
  • Qunfeng Cheng
چکیده

After billions of years of evolution, natural materials, such as bamboo, bone, and nacre, show unique mechanical properties, due to their intrinsic hierarchical micro/nanoscale architecture and abundant interfacial interactions. This relationship between architecture, interfacial interactions, and mechanical properties of natural materials, supplies the inspiration for constructing high performance lightweight nanocomposites. Graphene’s high tensile strength, Young’s modulus, and electrical conductivity when compared with other nanomaterials make it an ideal building block for constructing high performance bioinspired nanocomposites. Such nanocomposites demonstrate promise for applications in many fields, including aerospace, aeronautics, submarine devices, car, and flexible electronic devices. In this review, we focus on the bioinspired strategy for preparing graphene-based nanocomposites (GBNs), and discuss the various interfacial interactions. Then the synergistic effects from building blocks and interfacial interactions are discussed in detail, along with the resultant GBNs used in the applications of sensors, actuators, supercapacitors, and nanogenerators, are also illustrated. These GBNs include, for example, one-dimensional (1D) fiber, two-dimensional (2D) film, and three-dimensional (3D) bulk nanocomposites. Finally, we provide our perspective on GBNs, and discuss how to efficiently mimic natural materials for creating new multifunctional bioinspired nanocomposites for practical applications in the near future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene-based artificial nacre nanocomposites.

With its extraordinary properties as the strongest and stiffest material ever measured and the best-known electrical conductor, graphene could have promising applications in many fields, especially in the area of nanocomposites. However, processing graphene-based nanocomposites is very difficult. So far, graphene-based nanocomposites exhibit rather poor properties. Nacre, the gold standard for ...

متن کامل

Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.

Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional ...

متن کامل

Learning from nature: constructing integrated graphene-based artificial nacre.

Natural nacre supplies a number of properties that can be used in designing high-performance bioinspired materials. Likewise, due to the extraordinary properties of graphene, a series of bioinspired graphene-based materials have recently been demonstrated. Compared to other approaches for constructing graphene-based materials, bioinspired concepts result in high-loading graphene, and the result...

متن کامل

Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites.

Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness o...

متن کامل

Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.

With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a "gold standard" for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016